Copied to
clipboard

?

G = C42.106D10order 320 = 26·5

106th non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.106D10, C10.572- (1+4), (C4×D4).13D5, C4⋊C4.314D10, C202Q822C2, (D4×C20).14C2, (C4×Dic10)⋊28C2, (C2×D4).210D10, C4.15(C4○D20), (C2×C10).86C24, Dic53Q814C2, C20.109(C4○D4), C20.48D419C2, (C2×C20).155C23, (C4×C20).148C22, C22⋊C4.107D10, C20.17D4.9C2, C23.D107C2, (C22×C4).205D10, C4.116(D42D5), C23.92(C22×D5), (D4×C10).250C22, C23.21D107C2, C4⋊Dic5.297C22, (C2×Dic5).36C23, (C4×Dic5).81C22, C22.114(C23×D5), (C22×C10).156C23, (C22×C20).105C22, C52(C22.50C24), C23.D5.103C22, C2.15(D4.10D10), (C2×Dic10).245C22, C10.D4.109C22, C10.38(C2×C4○D4), C2.42(C2×C4○D20), C2.20(C2×D42D5), (C5×C4⋊C4).322C22, (C2×C4).281(C22×D5), (C5×C22⋊C4).120C22, SmallGroup(320,1214)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.106D10
C1C5C10C2×C10C2×Dic5C4×Dic5Dic53Q8 — C42.106D10
C5C2×C10 — C42.106D10

Subgroups: 598 in 212 conjugacy classes, 99 normal (29 characteristic)
C1, C2 [×3], C2 [×2], C4 [×4], C4 [×11], C22, C22 [×6], C5, C2×C4 [×3], C2×C4 [×2], C2×C4 [×12], D4 [×2], Q8 [×6], C23 [×2], C10 [×3], C10 [×2], C42, C42 [×6], C22⋊C4 [×2], C22⋊C4 [×8], C4⋊C4, C4⋊C4 [×11], C22×C4 [×2], C2×D4, C2×Q8 [×3], Dic5 [×8], C20 [×4], C20 [×3], C2×C10, C2×C10 [×6], C42⋊C2 [×2], C4×D4, C4×Q8 [×3], C22⋊Q8 [×2], C4.4D4 [×2], C422C2 [×4], C4⋊Q8, Dic10 [×6], C2×Dic5 [×8], C2×C20 [×3], C2×C20 [×2], C2×C20 [×4], C5×D4 [×2], C22×C10 [×2], C22.50C24, C4×Dic5 [×6], C10.D4 [×6], C4⋊Dic5, C4⋊Dic5 [×4], C23.D5 [×8], C4×C20, C5×C22⋊C4 [×2], C5×C4⋊C4, C2×Dic10, C2×Dic10 [×2], C22×C20 [×2], D4×C10, C4×Dic10, C202Q8, C23.D10 [×4], Dic53Q8 [×2], C20.48D4 [×2], C23.21D10 [×2], C20.17D4 [×2], D4×C20, C42.106D10

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D5, C4○D4 [×4], C24, D10 [×7], C2×C4○D4 [×2], 2- (1+4), C22×D5 [×7], C22.50C24, C4○D20 [×2], D42D5 [×2], C23×D5, C2×C4○D20, C2×D42D5, D4.10D10, C42.106D10

Generators and relations
 G = < a,b,c,d | a4=b4=1, c10=b2, d2=a2, ab=ba, cac-1=dad-1=a-1, bc=cb, dbd-1=b-1, dcd-1=c9 >

Smallest permutation representation
On 160 points
Generators in S160
(1 107 27 49)(2 50 28 108)(3 109 29 51)(4 52 30 110)(5 111 31 53)(6 54 32 112)(7 113 33 55)(8 56 34 114)(9 115 35 57)(10 58 36 116)(11 117 37 59)(12 60 38 118)(13 119 39 41)(14 42 40 120)(15 101 21 43)(16 44 22 102)(17 103 23 45)(18 46 24 104)(19 105 25 47)(20 48 26 106)(61 144 131 90)(62 91 132 145)(63 146 133 92)(64 93 134 147)(65 148 135 94)(66 95 136 149)(67 150 137 96)(68 97 138 151)(69 152 139 98)(70 99 140 153)(71 154 121 100)(72 81 122 155)(73 156 123 82)(74 83 124 157)(75 158 125 84)(76 85 126 159)(77 160 127 86)(78 87 128 141)(79 142 129 88)(80 89 130 143)
(1 102 11 112)(2 103 12 113)(3 104 13 114)(4 105 14 115)(5 106 15 116)(6 107 16 117)(7 108 17 118)(8 109 18 119)(9 110 19 120)(10 111 20 101)(21 58 31 48)(22 59 32 49)(23 60 33 50)(24 41 34 51)(25 42 35 52)(26 43 36 53)(27 44 37 54)(28 45 38 55)(29 46 39 56)(30 47 40 57)(61 95 71 85)(62 96 72 86)(63 97 73 87)(64 98 74 88)(65 99 75 89)(66 100 76 90)(67 81 77 91)(68 82 78 92)(69 83 79 93)(70 84 80 94)(121 159 131 149)(122 160 132 150)(123 141 133 151)(124 142 134 152)(125 143 135 153)(126 144 136 154)(127 145 137 155)(128 146 138 156)(129 147 139 157)(130 148 140 158)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 79 27 129)(2 68 28 138)(3 77 29 127)(4 66 30 136)(5 75 31 125)(6 64 32 134)(7 73 33 123)(8 62 34 132)(9 71 35 121)(10 80 36 130)(11 69 37 139)(12 78 38 128)(13 67 39 137)(14 76 40 126)(15 65 21 135)(16 74 22 124)(17 63 23 133)(18 72 24 122)(19 61 25 131)(20 70 26 140)(41 150 119 96)(42 159 120 85)(43 148 101 94)(44 157 102 83)(45 146 103 92)(46 155 104 81)(47 144 105 90)(48 153 106 99)(49 142 107 88)(50 151 108 97)(51 160 109 86)(52 149 110 95)(53 158 111 84)(54 147 112 93)(55 156 113 82)(56 145 114 91)(57 154 115 100)(58 143 116 89)(59 152 117 98)(60 141 118 87)

G:=sub<Sym(160)| (1,107,27,49)(2,50,28,108)(3,109,29,51)(4,52,30,110)(5,111,31,53)(6,54,32,112)(7,113,33,55)(8,56,34,114)(9,115,35,57)(10,58,36,116)(11,117,37,59)(12,60,38,118)(13,119,39,41)(14,42,40,120)(15,101,21,43)(16,44,22,102)(17,103,23,45)(18,46,24,104)(19,105,25,47)(20,48,26,106)(61,144,131,90)(62,91,132,145)(63,146,133,92)(64,93,134,147)(65,148,135,94)(66,95,136,149)(67,150,137,96)(68,97,138,151)(69,152,139,98)(70,99,140,153)(71,154,121,100)(72,81,122,155)(73,156,123,82)(74,83,124,157)(75,158,125,84)(76,85,126,159)(77,160,127,86)(78,87,128,141)(79,142,129,88)(80,89,130,143), (1,102,11,112)(2,103,12,113)(3,104,13,114)(4,105,14,115)(5,106,15,116)(6,107,16,117)(7,108,17,118)(8,109,18,119)(9,110,19,120)(10,111,20,101)(21,58,31,48)(22,59,32,49)(23,60,33,50)(24,41,34,51)(25,42,35,52)(26,43,36,53)(27,44,37,54)(28,45,38,55)(29,46,39,56)(30,47,40,57)(61,95,71,85)(62,96,72,86)(63,97,73,87)(64,98,74,88)(65,99,75,89)(66,100,76,90)(67,81,77,91)(68,82,78,92)(69,83,79,93)(70,84,80,94)(121,159,131,149)(122,160,132,150)(123,141,133,151)(124,142,134,152)(125,143,135,153)(126,144,136,154)(127,145,137,155)(128,146,138,156)(129,147,139,157)(130,148,140,158), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,79,27,129)(2,68,28,138)(3,77,29,127)(4,66,30,136)(5,75,31,125)(6,64,32,134)(7,73,33,123)(8,62,34,132)(9,71,35,121)(10,80,36,130)(11,69,37,139)(12,78,38,128)(13,67,39,137)(14,76,40,126)(15,65,21,135)(16,74,22,124)(17,63,23,133)(18,72,24,122)(19,61,25,131)(20,70,26,140)(41,150,119,96)(42,159,120,85)(43,148,101,94)(44,157,102,83)(45,146,103,92)(46,155,104,81)(47,144,105,90)(48,153,106,99)(49,142,107,88)(50,151,108,97)(51,160,109,86)(52,149,110,95)(53,158,111,84)(54,147,112,93)(55,156,113,82)(56,145,114,91)(57,154,115,100)(58,143,116,89)(59,152,117,98)(60,141,118,87)>;

G:=Group( (1,107,27,49)(2,50,28,108)(3,109,29,51)(4,52,30,110)(5,111,31,53)(6,54,32,112)(7,113,33,55)(8,56,34,114)(9,115,35,57)(10,58,36,116)(11,117,37,59)(12,60,38,118)(13,119,39,41)(14,42,40,120)(15,101,21,43)(16,44,22,102)(17,103,23,45)(18,46,24,104)(19,105,25,47)(20,48,26,106)(61,144,131,90)(62,91,132,145)(63,146,133,92)(64,93,134,147)(65,148,135,94)(66,95,136,149)(67,150,137,96)(68,97,138,151)(69,152,139,98)(70,99,140,153)(71,154,121,100)(72,81,122,155)(73,156,123,82)(74,83,124,157)(75,158,125,84)(76,85,126,159)(77,160,127,86)(78,87,128,141)(79,142,129,88)(80,89,130,143), (1,102,11,112)(2,103,12,113)(3,104,13,114)(4,105,14,115)(5,106,15,116)(6,107,16,117)(7,108,17,118)(8,109,18,119)(9,110,19,120)(10,111,20,101)(21,58,31,48)(22,59,32,49)(23,60,33,50)(24,41,34,51)(25,42,35,52)(26,43,36,53)(27,44,37,54)(28,45,38,55)(29,46,39,56)(30,47,40,57)(61,95,71,85)(62,96,72,86)(63,97,73,87)(64,98,74,88)(65,99,75,89)(66,100,76,90)(67,81,77,91)(68,82,78,92)(69,83,79,93)(70,84,80,94)(121,159,131,149)(122,160,132,150)(123,141,133,151)(124,142,134,152)(125,143,135,153)(126,144,136,154)(127,145,137,155)(128,146,138,156)(129,147,139,157)(130,148,140,158), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,79,27,129)(2,68,28,138)(3,77,29,127)(4,66,30,136)(5,75,31,125)(6,64,32,134)(7,73,33,123)(8,62,34,132)(9,71,35,121)(10,80,36,130)(11,69,37,139)(12,78,38,128)(13,67,39,137)(14,76,40,126)(15,65,21,135)(16,74,22,124)(17,63,23,133)(18,72,24,122)(19,61,25,131)(20,70,26,140)(41,150,119,96)(42,159,120,85)(43,148,101,94)(44,157,102,83)(45,146,103,92)(46,155,104,81)(47,144,105,90)(48,153,106,99)(49,142,107,88)(50,151,108,97)(51,160,109,86)(52,149,110,95)(53,158,111,84)(54,147,112,93)(55,156,113,82)(56,145,114,91)(57,154,115,100)(58,143,116,89)(59,152,117,98)(60,141,118,87) );

G=PermutationGroup([(1,107,27,49),(2,50,28,108),(3,109,29,51),(4,52,30,110),(5,111,31,53),(6,54,32,112),(7,113,33,55),(8,56,34,114),(9,115,35,57),(10,58,36,116),(11,117,37,59),(12,60,38,118),(13,119,39,41),(14,42,40,120),(15,101,21,43),(16,44,22,102),(17,103,23,45),(18,46,24,104),(19,105,25,47),(20,48,26,106),(61,144,131,90),(62,91,132,145),(63,146,133,92),(64,93,134,147),(65,148,135,94),(66,95,136,149),(67,150,137,96),(68,97,138,151),(69,152,139,98),(70,99,140,153),(71,154,121,100),(72,81,122,155),(73,156,123,82),(74,83,124,157),(75,158,125,84),(76,85,126,159),(77,160,127,86),(78,87,128,141),(79,142,129,88),(80,89,130,143)], [(1,102,11,112),(2,103,12,113),(3,104,13,114),(4,105,14,115),(5,106,15,116),(6,107,16,117),(7,108,17,118),(8,109,18,119),(9,110,19,120),(10,111,20,101),(21,58,31,48),(22,59,32,49),(23,60,33,50),(24,41,34,51),(25,42,35,52),(26,43,36,53),(27,44,37,54),(28,45,38,55),(29,46,39,56),(30,47,40,57),(61,95,71,85),(62,96,72,86),(63,97,73,87),(64,98,74,88),(65,99,75,89),(66,100,76,90),(67,81,77,91),(68,82,78,92),(69,83,79,93),(70,84,80,94),(121,159,131,149),(122,160,132,150),(123,141,133,151),(124,142,134,152),(125,143,135,153),(126,144,136,154),(127,145,137,155),(128,146,138,156),(129,147,139,157),(130,148,140,158)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,79,27,129),(2,68,28,138),(3,77,29,127),(4,66,30,136),(5,75,31,125),(6,64,32,134),(7,73,33,123),(8,62,34,132),(9,71,35,121),(10,80,36,130),(11,69,37,139),(12,78,38,128),(13,67,39,137),(14,76,40,126),(15,65,21,135),(16,74,22,124),(17,63,23,133),(18,72,24,122),(19,61,25,131),(20,70,26,140),(41,150,119,96),(42,159,120,85),(43,148,101,94),(44,157,102,83),(45,146,103,92),(46,155,104,81),(47,144,105,90),(48,153,106,99),(49,142,107,88),(50,151,108,97),(51,160,109,86),(52,149,110,95),(53,158,111,84),(54,147,112,93),(55,156,113,82),(56,145,114,91),(57,154,115,100),(58,143,116,89),(59,152,117,98),(60,141,118,87)])

Matrix representation G ⊆ GL4(𝔽41) generated by

04000
1000
00400
00040
,
1000
0100
0090
003132
,
0100
1000
00210
001039
,
0900
9000
003921
00352
G:=sub<GL(4,GF(41))| [0,1,0,0,40,0,0,0,0,0,40,0,0,0,0,40],[1,0,0,0,0,1,0,0,0,0,9,31,0,0,0,32],[0,1,0,0,1,0,0,0,0,0,21,10,0,0,0,39],[0,9,0,0,9,0,0,0,0,0,39,35,0,0,21,2] >;

65 conjugacy classes

class 1 2A2B2C2D2E4A···4H4I4J4K4L4M4N···4S5A5B10A···10F10G···10N20A···20H20I···20X
order1222224···4444444···45510···1010···1020···2020···20
size1111442···241010101020···20222···24···42···24···4

65 irreducible representations

dim11111111122222222444
type+++++++++++++++---
imageC1C2C2C2C2C2C2C2C2D5C4○D4D10D10D10D10D10C4○D202- (1+4)D42D5D4.10D10
kernelC42.106D10C4×Dic10C202Q8C23.D10Dic53Q8C20.48D4C23.21D10C20.17D4D4×C20C4×D4C20C42C22⋊C4C4⋊C4C22×C4C2×D4C4C10C4C2
# reps111422221282424216144

In GAP, Magma, Sage, TeX

C_4^2._{106}D_{10}
% in TeX

G:=Group("C4^2.106D10");
// GroupNames label

G:=SmallGroup(320,1214);
// by ID

G=gap.SmallGroup(320,1214);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,120,219,268,1571,192,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^10=b^2,d^2=a^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^9>;
// generators/relations

׿
×
𝔽